Guideline Specification – GS GCL1

Multi Component Polyethylene Smooth- Coated

Geosynthetic Clay Liner –

GRI-GCL3 and EPA Compliant Bentofix X2
1.0 Introduction

Geosynthetic Clay Liners (GCLs) are manufactured, reinforced hydraulic barriers consisting of needle-punched natural sodium bentonite and geotextiles.

Needle-punched geosynthetic clay liners (GCLs) are fibre-reinforced composites that combine two durable outer layers and an intermediate, uniform core of high-swelling powder of sodium bentonite clay. This unique clay core acts as the barrier component, but its ultimate performance is dependent upon the durability and security provided by the outer layers. The uniform needle-punching forms a directionally independent, shear stress transferring sealing barrier. When the bentonite core hydrates with fresh water, the bentonite swells and forms a low-permeability gel layer, which outperforms traditional, thick compacted clay liners, due to the bentonite's ability to self-seal and re-heal.

Other features of needle-punched GCLs are product dependent and include (but are not limited to):

- High internal shear strength for steeper slopes.
- Durable geotextiles for the encapsulation of bentonite and long-term performance
- Excellent interface friction values
- Robust installation strength (if the nonwoven of the GCL is placed against cover soil material)
- Powdered bentonite for uniform clay distribution and immediate swelling. This high-quality powdered form of bentonite ensures a better seal and longer-term performance than granulated bentonite.
- Self-sealing of bentonite-impregnated overlaps

Geosynthetic Clay Liners (GCLs) are often used as a stand-alone liner or in combination with a geomembrane. They replace thick compacted clay liners due to many advantages, such as easy installation, low hydraulic conductivity, self-healing capabilities, capable of withstanding differential settlement, consistency, shear performance and cost effectiveness.

However, the designer should consider site specific conditions (soil material, slope angle, interface friction) and specify relevant characteristics to ensure a long-term and safe design.
The latest GCL developments are **multicomponent GCLs**. One method is adding a **polymer extruded coating** (**virgin Polyethylene resin**) to the needle-punched GCL (on woven side) which improves the GCL performance and provides a greater range of applications where GCLs can be appropriately used. The additional component is a provision for the GCL to operate effectively in situations where the designer wishes to:

- Minimise root penetration into the GCL
- Increase resistance against desiccation
- Minimise bentonite piping potential under high water gradients
- Lower permeability
- Minimise the potential for ion exchange
- Minimise the potential for gas transfer

To ensure the long term performance of polymer coated GCLs other design issues might be of concern and should be considered prior to the installation of the needle-punched GCL.

These may include:

- Durability of the Coating
- Resistance against Installation Stress
- Overlapping of Polymer Coated GCLs
- Transmissivity between Coating and GCL
- Interface and internal Shear
- Peel Strength of all bonds including the Coating

This document is to assist design consultants with the technical specifications of GCLs, in particularly, the component geotextile and bentonite properties and the GCL physical and hydraulic properties. These specifications meet the recommendations from the **Geosynthetic Research Institute (GRI)** in the USA and the local **Environmental Protection Authority’s (EPA) Best Practice Environmental Management (BPEM)** and **Department of Environmental and Resource Management (DERM)** policy.
2.0 Technical Specifications

2.1 Introduction

The Geosynthetic Clay Liner (GCL) shall consist of a continuous layer of powdered sodium bentonite, sandwiched between a needle-punched polypropylene (PP) geotextile as a cover layer and a slit film PP woven geotextile as the carrier layer. The components shall be needle-punched uniformly together across the entire GCL. Additional bentonite with the same quality as the core bentonite shall be impregnated into the cover nonwoven geotextile a minimum of 500mm from each roll edge during the manufacturing process to facilitate longitudinal impermeable overlaps. The GCL shall be coated with a virgin polyethylene that is extruded onto the surface of the woven geotextile and forms an intimate bond with that surface. As a composite product the Hydraulic Conductivity of the Coated GCL is typically $1 \times 10^{-14} \text{ m/s}$.

2.2 Abbreviations

The abbreviations listed below, when used in this Specification, shall have the following meanings:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRI</td>
<td>Geosynthetic Research Institute in USA</td>
</tr>
<tr>
<td>EPA BPEM</td>
<td>Environmental Protection Authority Best Practice Environmental Management</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing of Materials</td>
</tr>
<tr>
<td>EN</td>
<td>European Normalisation</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organisation</td>
</tr>
</tbody>
</table>

2.3 Definitions

Geosynthetic Clay Liner (GCL) - A factory manufactured hydraulic barrier consisting of sodium bentonite clay, sandwiched between, supported and encapsulated by two geotextiles, held together by needle punching.

Multi-component coated Geosynthetic Clay Liner (GCL) - GCL product with at least one layer of a polymer applied to the GCL as a fluid and allowed to solidify.

Geotextile - A permeable woven, nonwoven fabric or a combination hereof used to contain the bentonite used in a GCL.

Sodium Bentonite - The high swelling clay component of GCLs consisting primarily of the mineral Montmorillonite.

Needle punching - A GCL manufacturing process whereby boards of barbed needles incorporate the staple fibers from a nonwoven geotextile, through a sodium bentonite clay layer, into the matrix of a second geotextile layer.

Minimum Average Roll Value (MARV) – is defined as the mean values of a particular lot less 2 standard deviations. Which when mathematically calculated provides 97.5% confidence.

Maximum Average Roll Value (MaxARV) – is defined as the mean values of a particular lot plus 2 standard deviations. Which when mathematically calculated provides 97.5% confidence.
3.0 GCL Materials

The multi-component coated GCL product supplied to the project shall be in full accordance with the requirements of this section. Glue laminated multi-component GCLs or membrane-backed GCLs are not approved for use on this project.

The GCL shall be manufactured by mechanically bonding the geotextiles using a needle-punching process to enhance frictional and internal shear strength characteristics. A polyethylene coating shall be extruded onto the woven geotextile carrier. In order to maintain these characteristics, no glues, adhesives or other non-mechanical bonding processes shall be used in lieu of the needle punched process.

3.1 Description

Acceptable GCLs for this project include Bentofix® X2 NSP4900 supplied by Global Synthetics Pty Ltd or any other needle punched polyethylene extruded coated GCL which meet all the requirements of this specification.

3.2 Alternative materials

Prior to considering an alternative GCL material, the Contractor shall submit certified test results and statements of quality from the proposed GCL supplier to the engineer, indicating without exception that the proposed GCL meets the requirements of this specification. Technical details of the GCL which shall be proposed to be used including the manufacturer's product specification name, location of manufacturer and a sample of the GCL.

The above requirements shall be delivered to the engineer a minimum of fifteen business days in advance of the bid.

3.3 GCL & Bentonite Physical properties

The GCL material shall be in accordance with the test methods and material physical properties as listed below in table 1 & 2. Table 1 furthermore defines minimum test frequencies for MQC.

3.4 Coating Properties

A low permeability polyethylene coating shall be extruded continuously to the carrier slit-film woven geotextile. The coating must provide intimate contact to the woven geotextile and no glues are permitted.
Table 1 – Multi-Component Polyethylene Coated GCL Properties (3)

<table>
<thead>
<tr>
<th>Technical Data</th>
<th>Test Method</th>
<th>Unit</th>
<th>Value</th>
<th>Test Frequency MQC</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotextile layers: Cover layer (polypropylene nonwoven):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass per unit area, cover nonwoven</td>
<td>EN ISO 9864 / ASTM D5261</td>
<td>g/m²</td>
<td>≥ 200</td>
<td>Every 2,500m²</td>
<td></td>
</tr>
<tr>
<td>Carrier layer (polypropylene woven):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass per unit, carrier woven (PP)</td>
<td>EN ISO 9864 / ASTM D5261</td>
<td>g/m²</td>
<td>≥ 100</td>
<td>Every 20,000m²</td>
<td></td>
</tr>
<tr>
<td>Polymer coating (virgin polyolefin resin):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymer</td>
<td>-</td>
<td>Virgin Polyethylene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass per unit area (Coating)</td>
<td>EN ISO 9864</td>
<td>g/m²</td>
<td>≥ 200</td>
<td>Every 4000m²</td>
<td></td>
</tr>
<tr>
<td>Bentonite layer (sodium bentonite powder):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass per unit area, powder sodium bentonite layer (@ 0% Moisture)</td>
<td>EN 14196</td>
<td>g/m²</td>
<td>≥ 3,700</td>
<td>Every 1,200m²</td>
<td></td>
</tr>
<tr>
<td>Swell Index</td>
<td>ASTM-D-5890</td>
<td>ml/2g</td>
<td>≥ 24</td>
<td>Every 5,000m²</td>
<td></td>
</tr>
<tr>
<td>Fluid Loss</td>
<td>ASTM-D-5891</td>
<td>ml/2g</td>
<td>≤ 18</td>
<td>Every 20,000m²</td>
<td></td>
</tr>
<tr>
<td>Montmorillonite content</td>
<td>VDP69 Methylene Blue</td>
<td>Mg/g</td>
<td>≥ 300</td>
<td>Every lot</td>
<td></td>
</tr>
<tr>
<td>Geosynthetic Clay Liner (coated GBR-C):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass per unit area, total GCL (@ 0% Moisture)</td>
<td>EN 14196 (ρ GBR-C)</td>
<td>g/m²</td>
<td>≥ 4,200</td>
<td>Every 1,200m²</td>
<td></td>
</tr>
<tr>
<td>Thickness GCL, total</td>
<td>EN ISO 9863-1(EN 964-1)</td>
<td>mm</td>
<td>≥ 5.4mm</td>
<td>Every 10,000m²</td>
<td></td>
</tr>
<tr>
<td>Max. tensile strength, md / cmd</td>
<td>EN ISO 10319 / ASTM-D-4595</td>
<td>kN/m</td>
<td>≥ 11 / 11</td>
<td>Every 10,000m²</td>
<td></td>
</tr>
<tr>
<td>Elongation at break, md / cmd</td>
<td>EN ISO 10319 / ASTM-D-4595</td>
<td>%</td>
<td>≥ 8 / 5</td>
<td>Every 10,000m²</td>
<td></td>
</tr>
<tr>
<td>Peel strength</td>
<td>ASTM-D-6496</td>
<td>N/m</td>
<td>≥ 360</td>
<td>Every 5,000m²</td>
<td></td>
</tr>
<tr>
<td>Static puncture strength</td>
<td>EN ISO 12236 / ASTM D6241</td>
<td>N</td>
<td>≥ 1800</td>
<td>Every 10,000m²</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Conductivity – k-value (permeability) / k₁₀ – GCL without coating</td>
<td>ASTM-D-5887</td>
<td>m/s</td>
<td>≤ 2.5 x 10⁻¹¹</td>
<td>Every 25,000m²</td>
<td></td>
</tr>
<tr>
<td>Index Flux / q₁₀ (without coating)</td>
<td>EN 16416 / ASTM-D-5887</td>
<td>m³/m²/s</td>
<td>≤ 9 x 10⁻⁹</td>
<td>Every 25,000m²</td>
<td></td>
</tr>
<tr>
<td>Roll dimensions / width x length</td>
<td>Manufacturer</td>
<td>m</td>
<td>4.85 x 40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) md = machine direction, cmd = cross machine direction
(2) tested at the control of bentonite prior production of the GCL in the corresponding tonnes
(3) ≤ / ≥ Values are MARV or MaxARV values
Table 2 - Bentonite Properties

<table>
<thead>
<tr>
<th>Bentonite Property</th>
<th>Range or Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montmorillonite content</td>
<td>≥ 80 wt.% (XRD)</td>
</tr>
<tr>
<td>Carbonate content</td>
<td>≤ 1-2 wt.%</td>
</tr>
<tr>
<td>Bentonite form</td>
<td>Natural Na-bentonite</td>
</tr>
<tr>
<td>Particle size</td>
<td>Powdered (e.g. 80% passing 75 micron sieve)</td>
</tr>
<tr>
<td>Cation exchange capacity</td>
<td>≥ 70 meq/100 g (or cmol/kg)</td>
</tr>
<tr>
<td>Free swell index</td>
<td>≥ 24 ml/2g</td>
</tr>
<tr>
<td>Fluid Loss</td>
<td>≤ 18 ml</td>
</tr>
</tbody>
</table>

Note: ≤ / ≥ Values stated are MARVs or MaxARV

3.5 Dimensions

The minimum acceptable dimensions for the GCL panels shall be a 4.85m wide and 40m long. Short rolls (rolls less than 40 m long) may be supplied, but at a rate not more than 2 rolls per delivery truck or container load but with a minimum length of 15m.

3.6 Overlap Markings

An overlap guide-line delineating the overlap zone shall be imprinted with non-toxic ink on the coating edges of the GCL panel to ensure the accuracy of the seam. These lines shall be used during CQA to ensure the minimum overlap is achieved. The overlap guideline shall indicate where the edge of the panel must be placed in order to achieve a full 30 cm of bentonite overlap for each GCL panel.
4.0 Qualifications & Quality Control & Quality Assurance

The GCL Manufacturer, Installer and Construction Quality Assurance (CQA) inspector shall all be skilled in accordance with the following experience requirements. Any exceptions must be approved by the project engineer prior to the project bid.

4.1 GCL Manufacturer

The GCL manufacturer selected for use on this project shall have successfully produced at least 10,000,000 square meters (m²) of needle punched GCL product and shall have an ISO 9001 (2008) accreditation. The components and the final GCL shall undergo regular and frequent testing in the manufacturer's laboratories according to the quality management standard ISO 9001(2008). The manufacturer (upon request) shall provide its own in-house test documents covering the batch of rolls delivered to site.

4.2 GCL Installer

The installer shall provide to the engineer sufficient evidence of installation experience and competence with the specified geosynthetic materials. The GCL installer shall demonstrate a minimum of 100,000 m² of GCL installation experience and shall provide sufficient evidence of installation experience and competence with other geosynthetics or shall demonstrate an acceptable level of training and supervision will be utilized in order to ensure the quality of the installation.

4.3 Manufacturing Quality Control (MQC)

The GCL shall be tested for compliance with this specification by the test methods and frequencies indicated on the material specification in table 1 or as appropriate. GCL materials may be tested pre-approved at the manufacturing location.

Quality Control certificates shall be issued by the GCL manufacturer to the contractor, installer or project engineer, CQA inspector or other designated party for each delivery of material. The certifications shall be signed by the quality control manager of the GCL manufacturer or other responsible party.
4.4 Independent Testing

If requested the GCL quality shall be assured by independent third party testing. This shall be in accordance with the quality assurance standard DIN 18200 or approved equivalent. Proof of this testing shall be provided for approval by the engineer before the contractor shall place any GCL within the project.

5.0 Delivery, Storage & Handling

Prior to shipment, the manufacturer shall label each roll, both on the GCL roll and on the surface of the plastic protective sleeve. Labels shall be resistant to fading and moisture degradation to ensure legibility at the time of the installation. At a minimum the roll labels shall identify the following:

- Length and width of roll
- Total weight of roll
- Type of GCL material
- Manufacturers name
- Production Lot number and Individual Roll number

All GCL rolls shall be packaged in moisture resistant plastic sleeves. The cores (steel or plastic) shall be sufficiently strong to resist collapse during transit and handling.

The party responsible for unloading the GCL shall contact the manufacturer/supplier prior to shipment to determine the correct unloading methods and equipment if different from the pre-approved and specified methods. Bentofix® Geosynthetic Clay Liner (GCL) must be supported during handling to ensure worker safety and prevent damage to the liner. Under approved circumstances only, shall the rolls be dragged, lifted from one end, lifted with only the forks of a lift truck or pushed to the ground from the delivery vehicle.

The CQA inspector shall verify that proper handling equipment is available which does not pose any danger to installation personnel or risk of damage or deformation to the liner material itself and those safety regulations on site are followed. Suitable handling equipment is described below:

Spreader bar assembly - A spreader bar assembly designed to carry the roll of GCL shall include both a core pipe or bar and a spreader bar beam. The core pipe shall be used to uniformly support the roll when inserted through the GCL core while the spreader bar beam will prevent chains or straps from chafing the roll edges.

Stinger

A stinger is a rigid pipe or rod with one end directly connected to a forklift or other handling equipment. If a stinger is used, it should be inserted to its full length into the roll to prevent excessive bending of the roll when lifted and be designed to carry the roll of GCL.
Lifting slings
Slings may be used to transport a GCL roll. Slings must uniformly support the GCL roll to prevent roll bending or deformation. It is generally recommended to place the slings at the one third points along the length of the roll. Great care must be exercised when this option is used. Lifting Slings must be supplied with appropriate compliance tags and SWL.

GCL Inspection upon delivery
Each roll shall be visually inspected when unloaded to determine if any packaging or material has been damaged during transit. Repairs to damaged GCL shall be performed in accordance with the manufacturer’s guidelines.

- Rolls exhibiting damage shall be marked and set aside for closer examination during deployment.
- Minor rips or tears in the plastic packaging shall be repaired with moisture resistant tape prior to being placed in storage to prevent moisture damage.
- GCL rolls delivered to the project site shall be only those indicated on GCL manufacturing quality control certificates.

Storage and stockpiling
The GCL shall be delivered, stored and handled strictly in accordance with the manufacturer’s instructions. Storage of the GCL rolls shall be the responsibility of the installer or other designated party. All GCL rolls shall be stock-piled and maintained dry in a flat location area away from high-traffic areas but sufficiently close to the active work area to minimize handling. The presence of free-flowing water within the packaging shall require that roll to be set aside for further examination to ascertain the extent of damage, if any.

- GCL should be stored no higher than five rolls high or limited to the height at which the handling apparatus may be safely handled by installation personnel. Stacks or tiers of rolls should be situated in a manner that prevents sliding or rolling by “chocking” the bottom layer of rolls.
- Rolls shall not be stacked on uneven or discontinuous surfaces in order to prevent bending, deformation, damage to the GCL or cause difficulty inserting the core pipe.
- An additional tarpaulin or plastic sheet shall be used over the stacked rolls to provide extra protection for GCL material stored outdoors.
- Bagged bentonite material shall be stored and covered next to GCL rolls unless other more protective measures are available. Bags shall be stored on pallets or other suitably dry surface which will prevent undue pre-hydration.
6.0 GCL Installation

The manufacturer/supplier shall provide an installation guide with detailed description of how the GCL shall be installed. Installation of the GCL shall be undertaken as per the manufacturer’s guidelines, unless otherwise directed.

6.1 Hydration of Bentofix GCLs

Normally GCLs shall not be artificially hydrated. However, if the GCL could come into contact with liquids such as salt water, before it hydrates; the GCL shall be artificially hydrated beforehand. This shall be done after a porous cover layer has been installed.

In case of presentation of salt water just on one side of the GCL, such as coastal areas, Coated GCL can be used without pre-hydration and the coated surface should face the salt water. The GCL will then be hydrated by the fresh water or leachate on the other side.

6.2 Responsibility of the Contractor

The contractor shall be responsible for the quality of the installed GCL and shall submit with his tender the following items for approval:

- Technical details of the GCL which shall be proposed to be used including the manufacturer's product specification name, location of manufacturer and a sample of the GCL.
- Details of the manufacturer's instructions for the delivery, handling and storage of the GCL, preparation of the surface on which the GCL shall be laid, installation of the GCL including anchoring, jointing and working around pipes/structures and protective layer to the GCL.
- A method statement of the installation of the GCL including schematic panel layout drawings.

The contractor shall be responsible for ensuring that the GCL supplied complies with the requirements of this specification. He shall allow sufficient time for approval and shipping to site from the place of manufacture. Costs through delays because the contractor has not allowed sufficient time for the supply shall be borne by the contractor.